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The growing number of applications of fractional derivatives in various fields of science
and engineering indicates that there is a significant demand for better mathematical algo-
rithms for models with real objects and processes. Currently, most algorithms are designed
for 1D problems due to the memory effect in fractional derivatives. In this work, the 2D
fractional subdiffusion problems are solved by an algorithm that couples an adaptive time
stepping and adaptive spatial basis selection approach. The proposed algorithm is also used
to simulate a subdiffusion-convection equation.

� 2010 Elsevier Inc. All rights reserved.
1. Introduction

Let X be a bounded domain in R2 with sufficiently smooth boundary oX = CD [CN with CD \ CN = ;. We consider an ini-
tial-boundary problem for a time fractional diffusion equation with fractional-order 0 < a < 1:
cDa
t uðx; tÞ ¼ Duðx; tÞ þ f ðxÞ; x 2 X; t 2 ð0; TÞ;

uðx;0Þ ¼ u0ðxÞ; x 2 X;

uðx; tÞ ¼ g0ðx; tÞ; x 2 CD; t 2 ð0; TÞ;
@muðx; tÞ ¼ g1ðx; tÞ; x 2 CN; t 2 ð0; TÞ;

ð1Þ
where cDa
t denotes the Caputo fractional derivative of order a with respect to t defined by
cDa
t uðx; tÞ ¼ 1

Cð1� aÞ

Z t

0

@uðx;gÞ
@g

dg
ðt � gÞa

; 0 < a < 1; ð2Þ
see monograph by Podlubny [1]. The operator D is the Laplacian in R2 and @m is the outward normal derivative. Note that if
a = 1, then the Caputo fractional derivative in (2) becomes @tu(x, t) and the problem in (1) represents the standard integer-
order parabolic equation. Very recently, existence and uniqueness of the weak solution of (1) is shown in [2].

The fractional diffusion equation is related with the continuous-time random walk and is a model for anomalous diffusion
in many applied fields such as diffusion processes of contaminants in porous media, see [3–6] and the references therein.

In this paper, we discuss a numerical algorithm that couples an adaptive time stepping and an adaptive spatial basis
selection approach, and show numerical results.
. All rights reserved.
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As for works on numerical methods for fractional diffusion equations appearing in (1.1), we can refer to [7–18]. The above
papers, except for [18], all treat the case where the spatial dimension is one; see also [14] for a nonlinear fractional diffusion
equation. As for available numerical methods for fractional diffusion equations, see [19,20].

2. Methodology

2.1. Finite difference time discretization

Suppose the numerical approximation of the solution u in (1) is obtained up to some time t (0 < t < T). Any explicit-time-
scheme requires evaluation of the Caputo fractional derivative (2). If the numerical approximation is restricted on uniform
time grid, algorithms for evaluation of the convolution integrals [21] can be employed. As we will soon see, nonuniform time
grids are preferred. Hence, we employ the difference approximation in [22] for the fractional time derivative. Suppose the
time interval [0,T] is discretized uniformly into n subintervals; define tk = k � Dt, k = 0,1, . . .,K, where Dt = T/n is the time step.
Let k(tk) be the exact value of a function k(t) at time step tk. Then, the fractional time derivative can be approximated by the
following scheme:
cDa
t kðtkþ1Þ ¼

1
Cð1� aÞ

Z t

0

@kðtÞ
@g

dg
ðt � gÞa

� 1
Cð1� aÞ

Xk

j¼0

kðtjþ1Þ � kðtjÞ
Dt

Z ðjþ1ÞDt

jDt

dg
ðtkþ1 � gÞa

¼ 1
Cð1� aÞ

Xk

j¼0

kðtjþ1Þ � kðtjÞ
Dt

Z ðk�jÞDt

ðk�jþ1ÞDt
g�adg ¼ 1

Cð1� aÞ
Xk

j¼0

kðtkþ1�jÞ � kðtk�jÞ
Dt

Z ðjþ1ÞDt

jDt
g�adg

¼ ðDtÞ1�a

Cð2� aÞ
Xk

j¼0

kðtkþ1�jÞ � kðtk�jÞ
Dt

½ðjþ 1Þ1�a � j1�a�:
Hence, we obtain a first-order discretization
cDa
t kðtkþ1Þ � cDa

t kðtkþ1Þ :¼ ðDtÞ�a

Cð2� aÞ
Xk

j¼0

wj½kðtkþ1�jÞ � kðtk�jÞ�; ð3Þ
for k = 0, . . .,K � 1 where the weight is defined as wj = [(j + 1)1�a � j1�a] for j = 0,1, . . .,K. Eq. (3) can be easily rewritten to ob-
tain a fully explicit scheme for the latest approximation k(tk+1) which depends on all previous values k(t0), . . .,k(tk).

2.2. Kernel based spatial approximation

In this section, we consider a kernel-basis representation for the spatial variables. For the considered problem (1), the
numerical approximation is expanded as
uðx; tÞ � Uðx; tÞ ¼
XN

‘¼1

k‘ðtÞUðkx� n‘k=cÞ; x 2 X; ð4Þ
where c is the scaling parameter, the set N ¼ fn‘gN
‘¼1 is the trial centers and U(�) can be any commonly used radial basis ker-

nel; for examples, multiquadrics U(r) = (r + 1)1/2, inverse multiquadrics U(r) = (r + 1)�1/2, Gaussian U(r) = exp(�r2), thin plate
spline U(r) = r2 log(r), etc. Putting (4) into the subdiffusion Eq. (1) results in
XN

‘¼1

cDa
t k‘ðtÞUðkx� n‘k=cÞ ¼

XN

‘¼1

k‘ðtÞDUðkx� n‘k=cÞ þ f ðxÞ: ð5Þ
Using a sufficiently dense set X ¼ fx1; x2; . . . ; xMg � X for collocation, applying the finite difference cDa
t in (3) to k‘(�) and

the strong form collocations at X will result in a matrix system for updating (discrete) values of the coefficient functions
k‘(tk), ‘ = 1, . . .,N,k = 1, . . .,K.

2.3. Geometric time grids

When t� 0, the size of ‘‘memory” in the fractional derivative approximation becomes enormously large. The ‘‘short-
memory” principle [1,23] suggests that, for large t, the role of the ‘‘history” of the behavior of the solution u(x, t) near
t = 0 can be neglected. This agrees with the fact that wj& 0 in (3) as j% with large n. Hence, one may take into account
the behavior of u(x, t) in the recent past in the interval [t � L, t] where L is the ‘‘memory length”. It is shown [1, Chapter 7] that
cDa
t kðtÞ � t�L

cDa
t kðtÞ

�� �� 6 �; if L P
M

�jCð1� aÞj

� �1=a

;

where t�L
cDa

t is the fractional derivative with moving lower integration limit t � L in the definition (2), instead of 0.
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Despite of its success in 1D problems, Fig. 1 shows that the short-memory principle is not particularly useful in reducing
the memory requirement in 2D when t � 1. The penalty in the form of inaccuracy is too large; for example, when a = 0.5, any
memory length L < 1 will introduce an error �� 1. As we will see soon in the numerical experiment, small time stepping is
important to capture the fast ‘‘initial drop” [1, Chapter 3] accurately.

One can also see the initial drop as a boundary layer at t = 0. Techniques for solving boundary layer problems, e.g. [24–26],
can be applied. However, these techniques do not ease the memory requirement. The nested mesh principle in [23] parti-
tions the time interval [0,T] into nonuniform subintervals; the smallest subinterval is placed at t = 0 in order to well-capture
the initial drop and the rest gradually widen as time increases in order to speed up the calculation. In this paper, we do not
neglect outdated information completely as in the short-memory principle. Similar to [27], we make use of the fading mem-
ory property but in a different way. To do so, we turn our focus to the geometric time grids [28,29].

For large t away from 0, the solutions of subdiffusion ‘‘diffuse more slowly” than the standard integer-order diffusion pro-
cess. It makes sense to employ a large time step in this region. Let U(�, tk) be the numerical approximation for u(�, tk). To mon-
itor this diffusion rate, we define a measure between the numerical solutions U(x, �) of two consecutive time steps by
DUtk
¼
kUðx; tkÞ � Uðx; tk�1ÞkL2ðXÞ

kUðx; tk�1ÞkL2ðXÞ
; for k ¼ 1; . . . ;K: ð6Þ
For some user-defined relaxation parameters s, if DUti
< s, the time spacing is relaxed:
Dt  2 � Dt;
up to some prefixed value Dtmax.

2.4. Adaptive kernel selections

Although the geometric time grids can help reduce the number of previous solutions needed for evaluating cDa
t uðx; tÞ at

current time, it is not possible to completely remove the memory nature as it comes directly from the fractional subdiffusion
problem. To effectively minimize the overhead of computer memory, the spatial information must be carefully treated. Using
kernel representation, a kind of meshless method, expansion (4) provides us a parametric description of the numerical
approximation. This is the first motivation of employing an adaptive technique so that only a small subset of unknown coef-
ficients k‘(tk) in (4) are nonzero and stored instead of all approximation function values U(X, tk).

However, kernel representation is not at all trouble-free. For example, choosing optimal trial centers n‘ for numerical
expansion is a common problem for researchers who employ various meshless methods. On one hand, high accuracy is al-
ways desired; on the other, ill-conditioning problems of the resultant matrices, that may lead to unstable algorithms, pre-
vent some researchers from using meshless methods. For example, the optimal placements of source points in the method of
fundamental solutions, or of the centers in the radial basis functions method are always unclear. Intuitively, such optimal
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Fig. 1. Memory length L required for various orders a and desired accuracy � in the ‘‘short-memory” principle.
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locations will depend on many factors: the partial differential equations, the domain, the trial basis used (i.e. the employed
method itself), the computational precision, some user-defined parameters, and so on. Such complexity makes the hope of
having optimal trial-centers-placement unpromising.

Various adaptive algorithms are devoted on the sub-optimal solution to the trial-centers-placement problem. In partic-
ular, we employ the most up-to-date algorithm in [30]. The first theoretical foundation [31] is that, in a large set of trial cen-
ters (large in the sense of jNjP jXj), there exists a subset such that the meshless collocation system is solvable. To put this
purely theoretical result into practice, we use more-than-necessary number of basis functions in the expansion (4). Then, by
applying the adaptive algorithm with certain selection criteria, a ‘‘proper” subset of trial centers will be selected from N.
Equivalently, only a small subset of coefficients k‘(tk) is active in (4). Before describing the algorithm, we emphasize the algo-
rithm presented below is matrix-free in the sense that resultant matrix will not be fully evaluated or stored. Hence, the in-
crease in number of basis functions does not impose an overhead to the memory requirement; that is one of the main
concerns in solving fractional subdiffusion equations.

Without going into the how-and-why, we present the key ideas and steps of the adaptive algorithm. Readers can refer to
the original articles [30–32] for details. Consider a meshless collocation system Ak = b with A 2 RM�N and b 2 RM usually with
M 6 N (due to the solvability theorem we mentioned above). The adaptive algorithm makes sequential collocation–trial cen-
ter pair selection and builds up ordered indexed sets, denoted by X(k) = {x(1), . . .,x(k)} and N(k) = {n(1), . . .,n(k)}, for k = 1, . . .,M, for
collocation points and trial centers, respectively.

Suppose, after the first k iterations, our algorithm selects a set of k collocation points and a set k RBF centers, respectively,
and builds X(k) � X and N(k) � N. These sets of points define a subproblem to the original one:
AðkÞ�kðkÞ ¼ �bðkÞ;

AT
ðkÞ�mðkÞ ¼ ��kðkÞ;

(
ð7Þ
where AðkÞ 2 Rk�k is a k � k square-submatrix of the full matrix A with rows associated with X(k) and columns associated with
N(k). Similarly, �bðkÞ 2 Rk is the k entry of b associated with the selected collocation points X(k). After solving (7) for �kðkÞ 2 Rk, let
kðkÞ 2 RN be the extension of �kðkÞ by patching zeros into entries associated with the unselected trial centers. Similarly, �mðkÞ 2 Rk

can be extended to mðkÞ 2 RN .
All versions of the adaptive algorithm use the same criteria for selecting new collocation points. The (k + 1)st collocation

point x(k+1) can be selected from the primal residual
rðkÞ ¼ AkðkÞ � b: ð8Þ
In other words, we are checking the well-fitness of approximating b with only k columns of A with weight in �kðkÞ. We pick
— from the set of collocation points XM — an (always-new) collocation point x(k+1) such that the corresponding entry in the
primal residual r(k) is the largest in absolute value (that is the greedy technique). This is why the adaptive algorithm here is
sometimes referred as the greedy algorithm.

For an unsymmetric matrix system, picking a row (or collocation point) provides no hint on column-selection. In [31,32],
columns (or trial centers) are selected based on the determinant function. A new column is selected such that of the resulting
submatrix A(k+1) has a determinant closest to 1. The latest version in [30] is more cost-efficient and it uses the dual residual
qðkÞ ¼ kðkÞ þ ATmðkÞ: ð9Þ
Geometric interpretation of the dual residual can be found in the same article. Using the greedy technique again, the new
trial center n(k+1) is selected from all candidates in NN such that q(k) is the largest in absolute value among all others. The
adaptive algorithm terminates if either residual is smaller than some tolerances or when severe problem of ill-conditioning
appears in the subproblem (7). After the adaptive algorithm terminates, the convergence analysis in [31] recommends to use
all available collocation points instead of the selected ones only. To obtain the unknown coefficient k in Ak = b, an overde-
termined system containing all rows but only the selected columns are solved. In [33], if one employs the MQ-kernel, expo-
nential spatial accuracy for the integer-order heat problem is formally proven. Numerical evidences of exponential
convergence for other types of PDE can be found in [34].
3. Numerical verifications

We verify the proposed numerical scheme to solve a simplified problem with zero Dirichlet/Neumann/mixed boundary
conditions:
cDa
t uðx; tÞ ¼ Duðx; tÞ; x 2 X; t 2 ð0; TÞ; 0 < a < 1;

uðx;0Þ ¼ u0ðxÞ; x 2 X;

uðx; tÞ ¼ 0; x 2 CD; t 2 ð0; TÞ;
@muðx; tÞ ¼ 0; x 2 CN ; t 2 ð0; TÞ:

ð10Þ
Let X = [�1,1]2 whose boundaries are labeled as in Fig. 2 and x = (x1,x2) 2X. We consider three cases:
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Fig. 2. Boundary labels for X = [�1,1]2.
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Dirichlet BC: is imposed on the whole boundary CD = oX. The exact solution of (10) associated with initial condition

u0ðxÞ ¼ cos
p
2

x1

� �
cos

p
2

x2

� �
; ð11Þ

is given as
w1ðx; tÞ ¼ Ea �
1
2
p2ta

� �
cos

p
2

x1

� �
cos

p
2

x2

� �
:

Neumann BC: is imposed on the whole boundary CN = oX with initial condition

u0ðxÞ ¼ sin
p
2

x1

� �
sin

p
2

x2

� �
: ð12Þ

The exact solution is Ea � 1
2 p

2ta� �
u0ðxÞ.

Mixed BC: with Dirichlet BC on CD = C1 [ C3 and Neumann BC on CN = C2 [ C4. Initial condition is
u0ðxÞ ¼ cos
p
2

x1

� �
sin

p
2

x2

� �
:

Similarly, the exact solution is Ea � 1
2 p

2ta
� �

u0ðxÞ.

3.1. a ¼ 1
2

Our first verification focuses on the half-order cases because exact solutions to (1) can be found explicitly. Recall the def-
inition of the (one-parameter) Mittag–Leffler function
EaðzÞ :¼
X1
k¼0

zk

Cðakþ 1Þ ; a > 0;
and its property
cDa
t Eað�ktaÞ ¼ �kEað�ktaÞ; 0 < a < 1: ð13Þ
As for the unique existence of solution to (10) in the case of CD = oX, we refer to the very recent results in [35,36]. Note
that E1/2(�z) = erfcx(z) is the scaled complementary error function defined by
erfcxðzÞ ¼ 2ffiffiffiffi
p
p expðz2Þ

Z 1

z
expð�g2Þdg;
see [1] for instance.
A total number of 1537 trial basis functions, including both interior and boundary nodes, is fed into the adaptive algo-

rithm for all time. For all three boundary conditions and all time updates, the numbers of selected basis range between
82 and 146 that is an over 90% saving in memory requirement. The initial time step is dt = 2�13 and it is relaxed whenever
the measure in (6) is less than s = 0%, 0.5%, 1.0%, and 10%. When s = 0%, the time stepping is fixed at dt = 2�13 for all time. Figs.
3 and 4 show the absolute and relative errors over t = (0,1] (see Fig. 5).

One interesting observation (see Figs. 3 and 4) is that fine time stepping (s = 0%) does not result in the best accuracy due
to the presence of cancelation errors. When s is large, e.g. 10%, the time spacing is relaxed too early and hence thus results in
poor accuracy near t = 0. However, as t increases, we see that the numerical solutions for s = 10% is more accurate than those
for s = 0%. This tells how severe the cancelation errors are. Better results can be obtained by small tolerances s = 0.5% or 1.0%.
Note that using small s > 0 requires more (but still much faster than using fixed small time step) computational time.
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3.2. Other a

To ensure that the proposed algorithm works beyond the special case a = 1/2, we consider (10) again but with different
order. To make use of the eigen-relation (13) with a – 1/2, we numerically evaluate the Mittag–Leffler functions [37] to high
accuracy (with tolerance 10�10). Other settings remain the same.

For Dirichlet BC with initial condition (11) and a = 2/3, the results are shown in Fig. 6. The error profiles are oscillatory
comparing to Fig. 3. We still observe that using s = 0.5% yields the best result. Without the geometric grid (i.e. s = 0%), the
results are not only inaccurate but also very computationally costly (due to the enormous number of time steps).
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For completeness, we now consider a problem with Neumann BC. We take a ¼ 1=
ffiffiffi
5
p

so that it is irrational and less than a-
half. Initial condition is taken to be (12). The results displayed in Fig. 7 should be compared with Fig. 4. From these figures,
we can see that the value a does not have a great effect on the proposed algorithm.
4. Numerical simulations

Our first simulation studies the effect of the order a on the decay rate of the subdiffusion solution. We consider (10) with
Neumann boundary condition for insulated boundary. Initial time stepping is dt = 2�13 and the relaxation parameter is set to
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be s = 0.05%. Fig. 8 shows the maximum norm of the numerical solution for a = 0.1,0.2, . . .,0.9 and time t 2 [0,1]; the dots in
Fig. 8 indicate all visited times in each run. For small a, say 0.1, the initial drop is enormous; in case of a = 0.1, the maximum
norm of the solution immediately drops from 1 to 0.34 after the first time update. On the other hand, when time gets large,
the change in the solution is relatively minor; dt is relaxed all the way to dtmax = 2�5. For large a, the solution behaves more
like the integer-order case. When a = 0.9, the largest time stepping used is dt = 2�8. In the experiment, we see that a very
small initial time stepping is desired for small a. Whereas, when a is large, a more easygoing relaxation scheme is desired.
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H. Brunner et al. / Journal of Computational Physics 229 (2010) 6613–6622 6621
Our last example simulates the fractional subdiffusion-convection problem,
cDa
t uðx; tÞ ¼ Duðx; tÞ þx

@

@x
uðx; tÞ; x 2 X;

uðx;0Þ ¼ 2
x1 þ 1

2

� �5

� 1; x ¼ ðx1; x2Þ 2 X;

uðx; tÞ ¼ x1; x 2 C1 [ C3;

@muðx; tÞ ¼ 0; x 2 C2 [ C4;
for a = {0.9,0.8,0.5,0.2}, t 2 (0,1) and x = 0.005 is the convection coefficient. Due to the symmetry of the problem, we show
the cross section of the numerical solution (parallel to the x1-axis) in Fig. 9 for every 1/32 s moving up from the lower-right
towards the diagonal.

The effect of convection can be seen most clearly in the case of a = 0.9; the presence of the points of inflection is obvious
for small t. The effect of convection is less clear as a decreases. After careful examination, one may still find some inflection
points for the case of a = 0.8. However, when a = 0.5, the effect of convection becomes even less significant. For a = 0.2, as in
the previous example, we see a very rapid change in the solution between (0,�); after that, the solution varies slowly. Note
also that the numerical solutions for different a are more distinct near the left endpoint where fluid is being pumped out. For
experiment design, it makes sense to place sensors somewhere in �1 < x1 < 0 instead of in 0 < x1 < 1.
5. Conclusion

We present a numerical scheme, which includes geometric time grids relaxation and adaptive kernel selection, for solving
the 2D fraction subdiffusion problems. The algorithm is tested with different boundary conditions, for which exact solutions
are known, in order to verify its accuracy. Next, the algorithm is applied to simulate the subdiffusion problems with different
fractional-orders and a subdiffusion-convection problem.
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Since the kernel presentation is used for spatial discretization, we implicitly required the initial condition to be of cer-
tainly smoothness. In cases where this is not true, one should employ a finite element or finite difference scheme for the
first few time steps. Once the numerical solution (sub) diffuses and becomes smooth, the kernel presentation can be re-intro-
duced. The memory saving provided by the adaptive kernel selection will become more significant in 3D. The simulations in
[33] suggest that the adaptive algorithm takes roughly about 500 trial basis for approximating smooth functions in [�1,1]3.
This suggests that the proposed algorithm has a good chance in solving 3D subdiffusion problems without modification. We
leave this to our future studies.
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